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Abstract

Infiltration is a key component in the rainfall runoff models employed for runoff prediction. Conventionally, the hydrologists

have relied on classical optimization techniques for obtaining the parameters of various infiltration equations. Recently, artificial

neural networks (ANNs) have been proposed as efficient tools for modelling and forecasting. This paper proposes the use of

ANNs for calibrating infiltration equations. The ANN consists of rainfall and runoff as the inputs and the infiltration parameters

as the outputs. Classical optimization techniques were also employed to determine flow hydrographs for comparison purposes.

The performances of both the approaches were evaluated using a variety of standard statistical measures in terms of their ability

to predict runoff. The results obtained in this study indicate that the ANN technique can be successfully employed for the

purpose of calibration of infiltration equations. The regenerated and predicted storms indicate that the ANN models performed

better than the classical techniques. It has been found that the ANNs are capable of performing very well in situations of limited

data availability since the differences in the performances of the ANNs trained on partial information and the ANNs trained on

the complete information was only marginal and the ANN trained on partial information consisted of a more compact

architecture. A wide variety of standard statistical performance evaluation measures are needed to properly evaluate the

performances of various ANN models rather than relying on a few global error statistics (such as RMSE and correlation

coefficient) normally employed.
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1. Introduction

When the rain water falls on the surface of the

earth, some of it gets intercepted on the obstructions
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such as buildings, vegetation, etc., some of it gets

trapped in the depressions on the surface of the earth,

some of it evaporates back into the atmosphere, some

of it seeps into the soil, and the remaining portion runs

off towards oceans via streams and rivers in the form

of what is known as runoff. The runoff in a river is

measured and represented graphically by a curve

showing volumetric runoff discharge (m3/s) passing
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through a cross section in a river as a function of time.

This type of graph between direct runoff in a river as a

function of time is called a direct runoff hydrograph

(DRH). The downward seepage of water through the

soil surface is known as ‘infiltration’. The infiltrated

water percolates deep and joins what is called the

groundwater. The groundwater can move horizontally

for long distances over long periods of time to appear

on the earth in the rivers in the form of base flow. The

water can evaporate from the vegetation, soil moisture,

and the surface of the earth in the form of

evapotranspiration. This whole cycle of movement

of water from the atmosphere to the oceans via

different parts of the earth is called the rainfall-runoff

process. The rainfall-runoff process is an extremely

complex, non-linear, dynamic, and fragmented pro-

cess that is affected by many physical factors. The

involvement of many often-interrelated physiographic

and climatic factors makes the rainfall-runoff process

not only very complex to understand but also

extremely difficult to model [1]. Researchers have

devoted considerable attention in developing the

mathematical models of the complex rainfall-runoff

process using either deterministic/conceptual techni-

ques or the systems theoretic techniques. The

mathematical models of the rainfall-runoff process

attempt to capture the characteristics of the underlying

physical processes through the use of equations of

mass, momentum, and energy in case of the

deterministic models and their simplified forms in

case of the conceptual models. The systems theoretic

models do not consider the underlying physics of the

rainfall-runoff process.

The mathematical models of the rainfall-runoff

process are essential components in the planning,

design, and operation of many water resources

projects. For example, in order to plan for the

distribution and allocation of the available water

resources for different uses (such as drinking,

irrigation, industrial, hydro-power, etc.) in a region,

accurate estimates of the runoff forecasts in the area

are needed. The design of major hydraulic structures

such as dams, bridges etc. requires the knowledge of

the rainfall-runoff process under extreme conditions.

Runoff forecasts are also needed for the routine

operation and management of various municipal water

supply systems, and for the floods and drought

management, etc. Many mathematical rainfall-runoff
models of varying degree of sophistication and

complexity have been proposed by various researchers

and hydrologists in the past.

A key component of any mathematical model of

the complex rainfall-runoff process is modelling of

the infiltration process. Many models of the

infiltration process are available such as Overton’s

model, Green-Ampt model, Horton’s model, Hol-

tan’s model, and Kostikov method, etc. [2]. The

Horton’s and Green-Ampt’s infiltration equations are

the most commonly used methods, which provide

estimates of the infiltration capacities as a function of

time. The Horton’s infiltration equation is a

simplified version of the Richard’s equation under

simplified assumptions. The Richard’s equation is

the basic governing differential equation for the

movement of water through unsaturated soil under

unsteady conditions that is based on the laws of

conservation of mass and momentum [3]. While the

Horton’s equation is developed from approximate

solution of the Richard’s equation, the Green-Ampt

equation is based on a more approximate physical

theory that has an exact analytical solution.

Regardless of the choice for the infiltration model

to be adopted in a rainfall-runoff model, the first step

in its use is the determination of the parameters of the

infiltration model. The infiltration parameters are

normally determined through model calibration or

field measurements. In using model calibration,

classical non-linear optimization techniques can be

adopted to determine the optimal set of infiltration

parameters using known rainfall and runoff data. The

performance of the rainfall-runoff models using

infiltration parameters determined using classical

optimization techniques are only reasonable.

Recently, the soft computing techniques have

become very popular especially in the last couple

of decades. Artificial neural networks (ANNs) have

been used as efficient tools of modelling and

forecasting in all disciplines. The ANNs are inspired

by the workings of a human brain, and have the

capability to generalize from facts or the information

presented to them. The ANNs have been used in a

wide variety of areas including modelling of the

complex rainfall-runoff process [4–12] but the

efforts of using the ANNs for model calibration

have been limited. It may be possible to improve the

performance of the rainfall-runoff models by the use
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of infiltration parameters determined using ANN

technique but it needs to be explored.

The objectives of the study presented in this paper

are to (a) employ the technique of ANN to determine a

set of optimal infiltration parameters using known

rainfall and runoff data, (b) employ a classical

optimization technique to determine the infiltration

parameters using the same data set for comparison

purposes, and (c) evaluate the performance of the two

methodologies of determining the optimal set of

infiltration parameters in terms of certain standard

statistical performance evaluation criteria in predict-

ing runoff. A major problem in using the ANNs for

rainfall-runoff modelling is the involvement of a large

number of input variables that represent the input layer

of the ANN model. More so while using the ANNs for

the calibration of an infiltration model, as there would

be a large number of runoff hydrograph ordinates that

need to be presented to the ANN as inputs. The large

number of inputs to an ANN increases its complexity,

which is not desirable and may also limit the use of the

developed model. Therefore, another objective of the

study presented in this paper is to evaluate the impacts

of presenting partial information to the input layer of

the ANN on the overall quality of the model

calibration and runoff prediction. This paper begins

with a brief description of the technique of ANN

followed by the description of the two infiltration

models employed in this study. The details of both

classical optimization and ANN models developed in

this study for the purpose of model calibration are

provided next followed by a description of the various

standard statistical performance evaluation criteria

before discussing the results and making concluding

remarks.
Fig. 1. Structure of a fe
2. Artificial neural networks

An artificial neural network is a highly inter-

connected network of many simple processing units

called neurons, which are analogous to the biological

neurons in the human brain. Neurons having similar

characteristics in an ANN are arranged in groups

called layers. The neurons in one layer are connected

to those in the adjacent layers, but not to those in the

same layer. The strength of connection between the

two neurons in adjacent layers is represented by what

is known as a ‘connection strength’ or ‘weight’. An

ANN normally consists of three layers, an input layer,

a hidden layer, and an output layer. In a feed-forward

network, the weighted connections feed activations

only in the forward direction from an input layer to the

output layer. On the other hand, in a recurrent network

additional weighted connections are used to feed

previous activations back into the network. The

structure of a feed-forward ANN is shown in Fig. 1.

In the Fig. 1, the circles represent neurons; the lines

joining the neurons represent weights; the inputs are

represented by X’s; Y represents the output; Vji and Wkj

represent the weights between input and hidden and

hidden and output layers, respectively.

An important step in developing an ANN model is

the training of its weight matrix. The weights are

initialized randomly between a suitable range, and

then updated using certain training mechanism. There

are primarily two types of training mechanisms,

supervised and unsupervised. A supervised training

algorithm requires an external teacher to guide the

training process. This typically involves a large

number of examples (or patterns) of inputs and

outputs for training. The inputs in an ANN are the
ed-forward ANN.
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cause variables and outputs are the effect variables of

the physical system being modelled. The primary goal

of training is to minimize the error function by

searching for a set of connection strengths that cause

the ANN to produce outputs that are equal to or closer

to the targets. A supervised training mechanism called

back-propagation training algorithm [13] is normally

adopted in most of the engineering applications. In the

back-propagation training mechanism, the input data

are presented at the input layer, the information is

processed in the forward direction, and the output is

calculated at the output layer. The target values are

known at the output layer, so that the error can be

estimated. The total error at the output layer is

distributed back to the ANN and the connection

weights are adjusted. This process of feed-forward

mechanism and back propagation of errors and weight

adjustment is repeated iteratively until convergence in

terms of an acceptable level of error is achieved. This

whole process is called the training of the ANN. The

trained ANN is then validated on the testing data set,

which it has not seen before. Once an ANN has been

trained and tested, it can be used for prediction or

modelling the physical system for which it is has been

designed.
3. Infiltration models

Two different infiltration models have been

employed in this study, Horton’s infiltration model

and the Green-Ampt infiltration model. The Horton’s

infiltration model has been employed for the

determination of its optimal parameters while the

Green-Ampt model was used to generate synthetic

runoff data from the synthetic rainfall data. The details

of these two infiltration models are provided below.

3.1. Horton’s infiltration model

The Horton’s equation is the most commonly used

infiltration equation that provides estimates of

potential infiltration rates as a function of time during

a rainfall storm. The Horton’s infiltration equation is a

simplified version of the Richard’s equation under

simplified assumptions. The Richard’s equation is the

basic governing differential equation for the move-

ment of water through unsaturated soil under unsteady
conditions that is based on the laws of conservation of

mass and momentum [3]. The Horton’s infiltration

equation can be represented by the following

mathematical expression [2,14]:

ft ¼ fc þ ð f0 � fcÞe�kt (1)

where f t is the potential infiltration rate at time t (mm/

h), fc is the constant steady-state infiltration rate after

sufficient time has elapsed (mm/h), f0 is the initial

infiltration rate at the beginning of a rainfall event

(mm/h), k is an exponential decay constant (h�1), and t

is time. Clearly, the three parameters involved in the

Horton’s equation that need to be determined using the

known set of rainfall and runoff data are f0, fc, and k.

The parameters of the Horton’s model can be deter-

mined using the rainfall and runoff data.

3.2. Green-Ampt infiltration model

Green-Ampt infiltration model was employed in

this study to compute infiltration for the purpose of

synthetic data generation (explained later). The

Green-Ampt infiltration model was selected because

it not only provides an exact analytical solution to the

simplified governing continuity and momentum

equations for the movement of water through the soil

beneath the earth but also provides estimates of the

potential incremental infiltration at each time step

based on the updated soil moisture storage continu-

ously. The Green-Ampt model of computing infiltra-

tion can be mathematically represented by the

following equations [3]:

ft ¼ K
cDu

Ft
þ 1

� �
(2)

Ft ¼ Kt þ cDu ln
Ft þ CDu

CDu

� �
(3)

DFt ¼ KDt þ cDu ln
Ft þ CDu

Ft�1 þ CDu

� �
(4)

Du ¼ ð1� SeÞue (5)

Se ¼
u � ur

h� ur
(6)

where f t is the potential infiltration rate at time t (mm/

h), Ft is the potential cumulative infiltration into the
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soil at time t (mm), DFt is the potential incremental

infiltration during time interval Dt (mm), K is the

saturated hydraulic conductivity of the soil (mm/h),

c is the soil suction head (mm), Se is the effective

saturation of soil at time t (varies between 0 and 1), u is

the moisture content in the soil at any time t (varies

between 0 and h), ur is the residual moisture content,

and h is the porosity of the soil. It is clear from the

Eqs. (2) through (6) that the Green-Ampt model of

infiltration is a non-linear model and is capable of

providing accurate estimates of infiltration through

different types of soils. Also, the calculation of infil-

tration using Eqs. (2) through (6) is not a straight-

forward process but involves iterative solution tech-

niques. The details of the solution procedure are not

included here and interested readers are referred to

[3]. The Green-Ampt infiltration parameters can be

physically measured in the laboratory from spatially

distributed samples. The parameters can also be cali-

brated using the rainfall and runoff data. In this study,

since the Green-Ampt model has been used to gen-

erate synthetic runoff data, its parameters are taken

from [3] corresponding to clayey soil.
4. Model development

Two types of approaches have been investigated in

this study for the purpose of determination of an

optimal set of infiltration parameters of the Horton’s

model. The first approach uses the classical optimiza-

tion technique to estimate the parameters of the

Horton’s infiltration equation using known rainfall and

runoff data. The second approach employs the ANN

technique to estimate the Horton’s infiltration para-

meters using the same data set. In the first approach, an

optimization program is formulated in which the

objective function consists of the sum of the squares of

the differences between the observed and modelled

DRH ordinates. This model is referred to as the runoff

optimization model (ROM) in this study. The second

approach uses multi-layer feed forward ANNs with

back-propagation training mechanism to determine

infiltration parameters. Two different ANN models

have been developed, the first ANN model uses all the

input data and the second ANN model uses portion of

the data set as input in order to test the robustness of

the ANN technique in situations where only partial
information is available. All the models were

developed using the synthetic rainfall and runoff data

generated in this study; however, the methodologies

proposed here can be easily extended to existing

catchments.

4.1. Model data

The data needed to test the proposed methodologies

include rainfall and runoff data from a catchment. The

methodologies proposed in this paper for the calibra-

tion of infiltration models have been tested using

synthetic data generated in a hypothetical catchment.

This can be achieved by randomly generating a series

of rainfall values for a specified duration and then

transforming this rainfall sequence through a rainfall-

runoff model. A simple unit hydrograph (UH) for the

hypothetical catchment was adopted as the rainfall-

runoff model in this study to compute runoff. The

Green-Ampt infiltration model was employed to

determine the infiltration losses. Rainfall and runoff

data were generated at 10 min time-interval for 12

different rainfall storm events. The procedure of

generating the rainfall and runoff data is described in a

step-wise procedure below:
1. F
or a given storm, six values of total rainfalls (in

mm) were randomly generated. The six values

correspond to six intervals of 10 min each (total

duration is 10 � 6 = 60 min).
2. T
he Green-Ampt infiltration model was then used

to calculate infiltration at each time step and

subtracted from total rainfall to obtain ‘effective

rainfall’ at each time step. The sum of six ‘effective

rainfall’ values gives the ‘total effective rainfall’

during 1 h event.
3. A
n assumed 1 h UH for the hypothetical catchment

was then used to compute the direct runoff

hydrograph ordinates resulting from the computed

‘total effective rainfall’ using the method of

superposition [3].
4. T
he steps 1 through 3 above were repeated 12 times

for each storm in order to generate rainfall runoff

data for 12 different storms.

The hypothetical catchment considered in this st-

udy consisted of clayey soil having certain infiltration

characteristics. The values of the Green Ampt infilt-
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ration parameters for the hypothetical catchment

were h = 0.475, C = 31.63 cm, K = 0.03 cm/h and

ur = 0.0 corresponding to clay soil taken from [3]. In

order to simulate the observation and instrumenta-

tion errors, random error component was added to

the DRH ordinates computed above, to obtain the

observed DRH ordinates to be used in the two ap-

proaches investigated in this study. This was achi-

eved by adding/subtracting a fraction of the

generated runoff value to itself. The fraction used

was randomly generated but was chosen such that the

maximum perturbation was not more than 10% of the

original value. The rainfall and runoff data corre-

sponding to the first six storm events were used for

training and the data corresponding to the remaining

six storms were used for testing purposes. It should

be noted that although the proposed methodology has

been tested using synthetic data in this study, it can

be easily extended to real-world problems by using

the rainfall and runoff data derived from existing

catchments.

4.2. Runoff optimization model

The runoff optimization model involves estimation

of the Horton’s infiltration parameters by minimizing

the sum of squares of differences between the

observed and modelled DRH ordinates using the

classical least squares optimization technique for

unconstrained case.

Let P be the total rainfall during a storm, and DF

be the cumulative infiltration during the storm, then

DF can be computed by integrating the Horton’s

model represented by Eq. (1) during the time limits

of t1 and t2.

DF ¼ fcðt2 � t1Þ �
f0 � fc

k

� �
ðe�kt2 � e�kt1Þ

� �

(7)

where t1 is the starting time and t2 is the ending time of

the rainfall storm event, and other variables have same

meaning as explained earlier. Once the cumulative

infiltration during the storm is known, effective rain-

fall can be calculated by subtracting actual incremen-

tal cumulative infiltration DF from the total rainfall

(P) for the storm. Let U(i) be the UH ordinate at time

step i, then the estimated DRH ordinate at time i,
QE(i), can be computed as follows:

QEðiÞ ¼ ½P� DF� � UðiÞ; i ¼ 1; 2; . . . ;N (8)

where N is the total number of DRH ordinates, and the

other variable are same as described earlier. Eq. (8)

represents a set of N equations in three unknown

parameters of the Horton’s infiltration equation ( f0,

fc, and k). Because the set of equations represented by

Eq. (8) is over-determined, an optimization technique

is needed to find the best solution in terms of the three

unknowns. The least squares principle can be

employed to determine the best solution for the three

unknown infiltration parameters. An objective func-

tion in terms of the total error equal to the sum of

squares of the differences between the observed and

estimated DRH ordinates can be represented by the

following equation:

Min Eð f0; fc; kÞ ¼
XN

i¼1

½QOðiÞ � QEðiÞ�2 (9)

where E( f0, fc, k) is the objective function to be

minimized, which is a function of the three unknown

infiltration parameters, QO(i) is the ordinate of the

observed DRH at time step i, and other notations have

the same meaning as explained earlier. This objective

function is non-linear in nature and needs to be solved

using a non-linear optimization solution procedure. In

this study, the mathematical software MATLAB was

employed to determine the optimal set of Horton’s

infiltration parameters. First, the data from all the 12

storm events were used to determine 12 different

optimal sets of Horton’s infiltration parameters. These

calibrated values of the Horton’s infiltration para-

meters were then used to compute the modelled

estimates of the 12 DRH ordinates. The performance

of the Horton’s infiltration parameters obtained from

the classical optimization technique was evaluated by

computing various standard statistical performance

evaluation criteria (explained later) using both

calibration and validation storms.

4.3. Artificial neural network models

The first step in developing an ANN model involves

identifying input and output variables and normalizing

the data between 0 and 1. The method of ‘channelized

normalization’ was used to normalize the input and
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output data, wherein the data representing separate

physical variables/parameters are normalized sepa-

rately. Then the best ANN architecture is determined

by finding the optimal number of hidden neurons

through training of the various architectures using a

trial and error method. Once the best ANN archi-

tecture is trained, it is validated using the testing data

set. As mentioned earlier, two different types of ANN

models were developed. The first ANN model (called

ANN-1 Model) used all the input data in terms of

rainfall and DRH ordinates; whereas, the second ANN

model (called ANN-2 Model) employed only a portion

of the data from the available data set.

4.3.1. ANN-1 Model

The ANN-1 Model developed in the present study

consisted of three layers, one input layer, one hidden

layer, and an output layer. The input data of the

ANN-1 Model consisted of the total storm rainfall,

and the DRH ordinates. The output data of the ANN-

1 Model consisted of the three Horton’s infiltration

parameters. The number of ordinates in the DRH was

27, therefore, the total number of neurons in the input

layer was 28, and with three Horton’s infiltration

parameters representing the output layer, a structure

of 28-N-3 was investigated. The number of hidden

neurons was varied from 1 to 20 and an ANN

architecture giving the minimum training error and

the principle of parsimony was used to select the final

ANN-1 Model. The rainfall and runoff data along

with the 12 sets of infiltration parameters constitute

the training and testing patterns for the ANN model.

The data from the first six 1 h storms were used for

training and those from the remaining six storms

were used for testing the ANN model architecture.

The ANN architecture consisting of five hidden

neurons (i.e. 28-5-3 ANN) was found suitable for the

data set considered. Once trained, the 28-5-3 ANN

model structure was used to compute 12 different

sets of Horton’s infiltration parameters using the

rainfall and runoff data from the 12 storms. These

estimates were then used to regenerate the first six

DRHs and predict the remaining six DRHs. The

performance of the Horton’s infiltration parameters

obtained from the ANN technique was then

evaluated by computing various standard statistical

performance evaluation criteria using both training

and testing storms.
4.3.2. ANN-2 Model

The ANN-2 Model was developed to test the

performance of the ANNs when presented with

partial information. The ANN-2 Model also con-

sisted of three layers, one input layer, one hidden

layer, and an output layer. The input data of the

ANN-2 Model consisted of the total storm rainfall,

and the DRH ordinates at reduced number of time

intervals. The output data of the ANN-2 Model

consisted of the three Horton’s infiltration para-

meters. The total number of neurons in the input

layer of the ANN-2 Model was 13 (1 total rainfall

and 12 DRH ordinates), and with three Horton’s

infiltration parameters representing the output layer,

a structure of 13-N-3 was investigated. The number

of hidden neurons was varied from 1 to 20 and an

ANN architecture giving the minimum training error

and the principle of parsimony was used to select

the final ANN-2 Model. The data from the first six

1 h storm patterns were used for training and those

from the remaining six storms were used for testing

the ANN-2 Model architecture. For this category

also, an ANN architecture consisting of five hidden

neurons (i.e. 13-5-3 ANN) was found suitable for

the data set considered. Once trained, the 13-5-3

ANN model structure was used to compute 12

different sets of Horton’s infiltration parameters

using the rainfall and runoff data from the 12

storms. These estimates were then used to regen-

erate the first six DRHs and predict the remaining

six DRHs. The performance of the Horton’s

infiltration parameters obtained from the ANN

technique was then evaluated by computing various

standard statistical performance evaluation criteria

using both training and testing storms.
5. Performance evaluation criteria

Three different types of standard statistical

performance evaluation criteria were employed to

evaluate the performance of the Horton’s infiltration

parameters computed using both classical optimiza-

tion and ANN techniques in this study. These are

average absolute relative error (AARE), threshold

statistics for an absolute relative error (ARE) level

of x% (TSx), and the correlation coefficient (R). The

three performance evaluation criteria used in the
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Table 1

Horton’s infiltration parameters

Model f0 (mm/h) fc (mm/h) K (h�1)

ROM 37.46 6.735 2.2627

ANN-1 Model 36.75 7.683 2.3285

ANN-2 Model 36.75 7.683 2.3285
current study can be calculated using the following

equations:

AARE ¼ 1

N

XN

i¼1

QOðtÞ � QEðtÞ
QOðtÞ

����
����� 100% (10)

TSx ¼
nx

N
� 100% (11)

R ¼
PN

t¼1ðQOðtÞ � QOÞðQEðtÞ � QEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1ðQOðtÞ � QOÞ2ðQEðtÞ � QEÞ2

q (12)

where nx is the number of data points for which the

ARE (expression within absolute in equation 10) is

less than x%, N is the total number of data points

computed, QO is the mean of observed runoff series,

QE is the mean of predicted/estimated runoff series,

and other variables have the same meaning as

explained earlier. Threshold statistics were computed

for ARE levels of 5%, 10%, 20%, and 50% in this

study. Clearly, lower AARE values and higher TSx

values would indicate good model performance. Cor-

relation coefficient values close to 1.0 indicate good

model performance.

The TS and AARE statistics measure the

‘‘effectiveness’’ of a model in terms of its ability

to accurately predict data from a calibrated model

and have been used in literature [15,16,8,17,10,11].

The other statistic, correlation coefficient R,

quantifies the ‘‘efficiency’’ of a model in capturing

the complex, dynamic, and non-linear rainfall-

runoff process. The global error statistics such as

correlation coefficient R and RMSE, tend to give

higher weightage to the high magnitude flows due to

the involvement of square of the difference between

observed and predicted flows, or equivalent expres-

sions. Therefore, the errors in estimating flows are

dominated by the errors in estimating high

magnitude flows in such global statistics. The error

statistics based on percentage error in prediction

with respect to observed value (such as TSx and

AARE) are better for performance evaluations as

they give appropriate weightage to all magnitude

flows (low, medium, or high). This aspect of relative

errors, such as AARE and TSx, has been found to

give more appropriate assessment and comparison

of various models by some researchers [18]

including the authors.
6. Results and discussions

The results in terms of the averaged Horton’s

infiltration parameters obtained from classical opti-

mization technique and the two ANN models are

presented in Table 1. The results in terms of the

various standard statistical performance evaluation

criteria from the three models are presented in Table 2.

It can be noted from the Table 1 that the values of the

three Horton’s infiltration parameters determined

using the rainfall and runoff data by all the three

models are comparable, and those from the two ANN

models are identical. The average values of the initial

infiltration rate ( f0), the final steady-state infiltration

rate ( fc), and the Horton’s decay exponent value (k)

from the classical optimization and the two ANN

models were 37.46 mm/h, 6.735 mm/h, 2.2627 h�1;

and 36.75 mm/h, 7.683 mm/h, 2.3285 h�1, respec-

tively. The comparable values of the Horton’s

infiltration parameters suggest that the ANNs can

be successfully employed for model calibration

purposes as they are able to recognize the inherent

relationships among the parameters and the rainfall

runoff data from a catchment.

The performance of the Horton’s infiltration para-

meters determined using the ANN technique was found

to be better than those determined using classical

optimization techniques in terms of various standard

statistical performance evaluation criteria for predicting

runoff. It can be noted from Table 2 that the ANN-1

Model outperformed the ROM Model in terms of the

threshold statistics and AARE during both training and

testing; whereas, the performance in terms of the

correlation coefficient was identical from all the three

models during both training and testing. The best

AARE of only 7.6% was achieved from the ANN-1

Model during testing. Further, 91.67% of the predicted

DRH ordinates had an ARE of less than 50% (see TS50

in Table 2) from the two ANN Models during both

training and testing. The correlation coefficient of

0.9932 was achieved from both the models during
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Fig. 3. Observed and predicted DRH by ANN-1 Model for a testing

storm.

Table 2

Statistical performance evaluation criteria

Model AARE R TS5 TS10 TS20 TS50

During training/calibration

ROM Model 11.54 0.9932 19.86 42.77 58.06 91.67

ANN-1 Model 10.13 0.9932 25.00 48.61 66.67 91.67

ANN-2 Model 10.13 0.9932 22.14 43.09 66.67 91.67

During testing validation

ROM Model 15.00 0.9932 15.97 34.03 61.11 90.97

ANN-1 Model 7.60 0.9932 37.50 66.67 81.25 91.67

ANN-2 Model 11.33 0.9932 29.17 52.78 67.36 91.67
training and testing, which is considered excellent.

Looking at the TS10 statistics from the Table 2 during

testing, it can be noted that only 34.03% of the predicted

cases from the ROM model had ARE values less than

10% (TS10 = 34.03% in Table 2) while the same

statistics was almost double (TS10 = 66.67%) from the

ANN-1 Model, which clearly highlights the superior

predictive capability of the ANN-1 Model. The

performance of the ANN models was consistently

superior to that of the ROM model in terms of the other

TS statistics also. Among the two ANN models, it can

be noted that the performance of the ANN-1 Model was

better than that of the ANN-2 Model. This is expected as

the ANN-2 Model was developed on the partial

information, and the loss of information would have

an impact on the quality of the model. However, it is

encouraging to note that the performance of the ANN-2

Model does not deteriorate significantly and the drop in

its predictive capability is within the acceptable limits

for practical considerations. It can be noted from the

Table 2 that the differences in the various statistics from

the two ANN models during training is minimal.

Further analyzing the results during testing, it can be

noted that the AARE of 7.60% from the ANN-1 Model
Fig. 2. Observed and predicted DRH by ROM for a testing storm.
increased to 11.33% from the ANN-2 Model; and the

TS5 value of 37.50% from ANN-1 Model reduced to

29.17% only from the ANN-2 Model. This clearly

indicates that the reduction in performance of the ANN-

2 Model was only minimal. This is an important finding

from the view point of the ANN model development of

the complex, dynamic, and nonlinear rainfall-runoff

process. The marginal reduction in the performance of

the ANN-2 Model developed on partial information is

more than compensated by its compact architecture

(13-5-3) involving fewer parameters (weights) to be

determined through training as compared to the massive

architecture (28-5-3) of the ANN-1 Model developed

on complete information. The graphical results in terms

of the observed and predicted DRH from the ROM,

ANN-1, and ANN-2 Models are presented in Figs. 2–4,

respectively. It is clear from the graphical results that all

the models perform very well.

It has been observed in this study that even though

the performance from any two models can be

comparable in terms certain global statistical mea-

sures, such as correlation coefficient R, the two models

can be quite different in making accurate predictions

of the variable being modelled. This is apparent from
ig. 4. Observed and predicted DRH by ANN-2 Model for a testing

torm.
F

s
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the identical R values from different models developed

in this study but varying TS and AARE statistics from

the same models. This highlights the need of

evaluating the performance of various ANN models

using a wide variety of standard statistical measures

rather than relying on a few global error statistics such

as correlation coefficient that are similar in nature to

the global error being minimized at the output layer of

an ANN. The global error statistics, such as RMSE and

R, etc., can be biased towards high magnitudes due to

the square of the differences between observed and

predicted values. The TS and AARE statistics are not

biased towards any magnitude of the flow and give

unbiased error estimate for the purpose of evaluating

the predictive capability of an ANN model.
7. Summary and conclusions

This study presents the findings of an investigation of

use of ANN technique for the purpose of determination

of infiltration model parameters using observed rainfall

and runoff data. In addition to the ANN technique, the

classical optimization technique was also explored for

comparison purposes. The data in terms of both storm

rainfall and runoff were synthetically generated using a

hypothetical catchment having known soil properties

and a 1 h unit hydrograph. Green-Ampt infiltration

model was used to generate the synthetic runoff data

from the known rainfall fields, which were generated

randomly. Horton’s infiltration model was selected for

the purpose of the determination of optimal set

parameters using known rainfall and runoff data. A

total of 12 storms were generated out of which data from

the first six storms were used for training and the data

from the remaining six storms were employed for

validation purposes. The performance of the two

techniques was evaluated using certain standard

statistical performance evaluation criteria.

The results obtained in this study indicate that the

technique of ANN can be suitable for the purpose of

determination of infiltration parameters. The perfor-

mance of the Horton’s infiltration parameters deter-

mined using the ANN technique was found to be better

than those obtained using the classical optimization

technique in terms of various standard statistical

performance evaluation criteria in predicting runoff.

The study of the evaluation of the robustness of the ANN
technique in determining the unknown relationships

inherent in the input output data when presented with

partial information revealed that though the perfor-

mance of the ANN trained on partial information

deteriorated slightly, the reduction in the predictive

capability was within acceptable limits for practical

considerations. Also, the compact architecture of the

ANN model trained on partial information more than

compensates for the reduction in its performance as

compared to the complex ANN model trained on

complete information. Moreover, it has been found that

the performances of various ANN models need to be

evaluated using a wide variety of standard statistical

performance evaluation measures (such as TSx and

AARE) rather than relying on a few global error

statistics, such as correlation coefficient and RMSE,

normally employed that are similar in nature to the

global error minimized at the output layer of an ANN.

No study is complete in itself and there is always

scope for further improvements. The inferences drawn

in this study are based on synthetically generated data,

and the validity of the developed methodology needs to

be verified using the real data from existing catchments.

The feed-forward ANN with back-propagation training

algorithm was employed in this study. Many researchers

have reported about the problems associated with the

back-propagation method while developing ANN

rainfall-runoff models [12]. Recently, some researchers

have explored the use of real-coded genetic algorithms

(GAs) for training of the ANN rainfall-runoff models,

which overcomes some of the problems associated with

the back-propagation training algorithm [12,19]. It may

be possible to improve the predictive capability of

rainfall-runoff models using infiltration parameters

determined using ANN models trained using other

training methods such as real-coded GAs. It is hoped

that future research efforts will focus in these directions

to take advantage of the relatively new and emerging

soft computing techniques for better planning, design,

operation, and management of the water resources

systems.
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